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SUMMARY 

We summarize here some theoretical results for fictitious gas regularization of compressible flow and give 
error estimates for the finite element approximation to the regularized problem. 
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INTRODUCTION 

The non-linear full potential equation for compressible aerodynamics is elliptic if the flow is 
everywhere subsonic. However, when the flow accelerates near an aerofoil the velocity may be 
locally supersonic and the equation is of mixed type. An interesting observation resulting from a 
classical Rayleigh-Janzen perturbation analysis is that the first-order compressibility correction is 
independent of the ratio of specific heats y for the gas. The choice y = - 1 was used by Chaplygin’ 
and later by von Karman2 in their analytical studies to simplify the compressible flow problem and 
yet still obtain useful results. 

This idea of fictitious gas regularization has reappeared recently in relation to finite difference 
and finite element methods for computing compressible In the present study we examine 
the mathematical structure of the non-linear problem and give sufficient conditions on y for 
existence of a unique solution. Error estimates for a finite element approximation are stated and 
verified in a numerical experiment. Details of the proofs are given el~ewhere.~ 

FORMULATION 

Let p be the density and q the velocity with q = Vqb for potential qb. From conservation of mass 

v . ( P q )  = 0 (1) 

where p = p(q). The adiabatic equation of state p = kpY for the gas, in the equation of motion 
(Bernoulli relation) yields 

where q = 141 and y is the ratio of specific heats for the gas. 
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Substituting (2) in (1) with q = V(b we obtain the full potential equation. The flow is subsonic and 
the equation is elliptic if q < a* = [ I  + ( y  - 1)/2] - ' I 2  and hyperbolic if q > a". I t  is convenient to 
use the local Mach number 

so that M < 1 and M > 1 in the subsonic and supersonic regions, respectively. 
For y = - 1 we obtain the Chaplygin gas approximation and (3) becomes 

p(q) = (1 + q 2 ) - 1 / 2  = ( I  - M2)1'2 (4) 

where M 2  = q2/(1 + q2).  Hence M < 1 for all q with this fictitious gas and M - ,  1 as q-+ co. 
Now, the variational functional 

Y/Y - 1 

J(u)  = jQ 1 - ( ~ ) ( V u ) 2 ]  dx 

on domain R has the full potential equation as its Euler equation, and we can investigate the 
properties of J to obtain appropriate conditions on y for existence of a unique solution. In 
particular we find that the functional J in (5) is well defined on the Sobolev space W'9P(12) if 
y > 1 or y d - 1, and in the usual Hilbert space H1 = W1*2 if y d - 1 only. Further, J is strictly 
convex for a fictitious gas satisfying y d - 1. I t  follows that there exists a unique solution to the 
regularized problem with y d - 1 .  

For a finite element discretization ah of l2 and approximation space H h  c HI@),  convexity of J 
follows as in the continuous problem above. This property implies existence of a unique solution to 
the approximate problem.6 

The finite element approximation satisfies the essential boundary conditions and the variational 
condition 

where ph = p(qh)  for the fictitious gas relation ( y  d - 1). The following estimates for the error # - - 4 h  

can be established? 

Lemma 

For (bEW"m(Rh)nHr(Rh), v3 k + 1 and Co elements of degree k = 1 and 2 there exists a 
constant C such that 

11 v 4 h  11 m,Rh d c (7) 

Theorem 

For ~ ~ W " " ( l 2 ~ ) n N ' ( l 2 , ) ,  r 3 k + 1 and 11 v@, 11 m,Rh < C, then we obtain the estimate 

14 - ( b h l  1,Rh Chk (8) 

NUMERICAL EXPERIMENT 

To confirm rate in (8) we constructed a model non-linear problem with y =  -2. The data f 
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a --- 3 - node (linear) triangle 
A--- 6 - node (quadratic 1 triangle 
o-- - 4 - node ( bilinear 1 quadrilateral 
m-- -9  - node (biquadratic) quadrilateral 
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Figure 1. Optimal rate of convergence for the velocity potential in the HI-norm 

in V.(pV4) = f’ was constructed to correspond to the solution 4 = 2x(y - 1) sin[y(x - l)] 
on [0,1] x [0,1]. Plots of the rate of convergence in the W’ norm are given in Figure 1 for 
calculations with linear and quadratic elements. 
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